红色中国网

 找回密码
 立即注册
搜索
查看: 3585|回复: 3
打印 上一主题 下一主题

“墨子号”量子卫星与地面站通信试验照片公布 [复制链接]

Rank: 8Rank: 8

跳转到指定楼层
楼主
发表于 2016-8-29 00:49:29 |只看该作者 |倒序浏览
“墨子号”量子卫星与地面站通信试验照片公布
梁福龙
时政编辑。出场自带反对。
发表时间:2016-08-28 19:04:25
字号:A-AA+
关键字: 墨子号卫星通信试验
今天下午,微博认证为中国科学院高能物理研究所研究员曹俊的网友@曹俊IHEP 发布了这样一条微博:墨子号量子卫星和地面兴隆站进行的通信试验,红光为地面发射,绿光为墨子号发射 (感谢韩越阳提供照片)。





很科幻、很高大上有木有!
原来这是世界首颗量子科学实验卫星“墨子号”与地面进行试验的画面。
微博说明为“ 现任中科院量子信息卓越创新中心副研究员”的网友@九维空间Sturman 解释说,照片中的两束光是信标光,对准卫星的地面两个望远镜做高速跟瞄用的,不是用来做量子通信实验的光(通信用单光子人们的肉眼也看不到)。绿色532纳米从星到地,红色810纳米从地到天。
他说,卫星和地面站各有一个望远镜来收和发量子通信的单光子,所以需要旁边用信标激光来瞄准。
至于为什么照片有红绿光的效果,@曹俊IHEP 补充说,曝光200秒,所以看到一条线。

@九维空间Sturman 还透露,25日,兴隆站和量子卫星成功激光光束对接,26日晚,阿里站和量子卫星成功激光光束对接。这种对接有多难:500km的轨道高度,第一宇宙速度,200mm口径的望远镜,难度相当于你站在五十公里以外把一枚一角硬币准确地扔进一列全速行驶的高铁上的一个矿泉水瓶里!
据量子科学实验卫星首席科学家潘建伟此前介绍,“墨子号”承担着发射和传输光信号的重要任务,要想保证距离地球表面数百公里的光信号能够顺利被地面光学天线接收,难度就好比是“针尖对麦芒”一样。
他解释说,由于卫星发射的光信号是极其微弱的单光子级别,在由空间向地面传输的过程中会受到许多因素的干扰,比如星光、灯光等都将成为干扰信号传输的背景噪声。此外,卫星的运动速度很快,地面的光学天线必须时刻紧跟卫星的“节奏”才有可能实现信号的准确接收。所以,在“墨子号”量子通信卫星的设计过程中,不仅要克服各种噪声的干扰保证信号源的稳定,同时还要实现与地面光学天线的准确对接。尽管是如同“针尖对麦芒”般苛刻的实验条件,但是在我国科学家的不懈努力下,如此不可思议的技术难题也依然得到了解决。
8月16日1时40分,我国在酒泉卫星发射中心用长征二号丁运载火箭成功将“墨子号”发射升空。
“墨子号”量子卫星是中国科学院空间科学先导专项首批科学实验卫星之一,其主要科学目标是借助卫星平台,进行星地高速量子密钥分发实验,并在此基础上进行广域量子密钥网络实验,以期在空间量子通信实用化方面取得重大突破;在空间尺度进行量子纠缠分发和量子隐形传态实验,开展空间尺度量子力学完备性检验的实验研究。

除此以外,“墨子号”还将搭载第二代激光实验系统,用新方法实现更高的信息传递速率。
工程还建设了包括南山、德令哈、兴隆、丽江4个量子通信地面站和阿里量子隐形传态实验站在内的地面科学应用系统,与量子卫星共同构成天地一体化量子保密通信与科学实验体系。

8月17日11时56分24秒,中科院遥感与数字地球研究所所属中国遥感卫星地面站密云站在第23圈次成功跟踪、接收到我国首颗量子科学实验卫星“墨子号”首轨数据。
本文系观察者网独家稿件,文章内容纯属作者个人观点,不代表平台观点,未经授权,不得转载,否则将追究法律责任。关注观察者网微信guanchacn,每日阅读趣味文章。

请支持独立网站,转发请注明本文链接:http://www.guancha.cn/Science/2016_08_28_372706.shtml

使用道具 举报

Rank: 8Rank: 8

沙发
发表于 2016-8-30 23:58:47 |只看该作者
是骡子是马到时候拉出来让大家瞧瞧就是了。

使用道具 举报

Rank: 8Rank: 8

板凳
发表于 2016-8-31 00:44:42 |只看该作者
非常期待,但冷静看待!

使用道具 举报

Rank: 8Rank: 8

地板
发表于 2016-8-31 01:04:24 |只看该作者
“墨子号”天地对接 用了哪些技术
发表时间:2016-08-30 09:30:02
字号:A-AA+
关键字: 墨子号量子通信量子卫星天文台望远镜
(文/铁流)日前,“墨子号”量子卫星与地面站通信试验照片公布,红光与绿光的对接显得格外科幻。据专家透露,“这其实是使用高功率激光来实现跟踪瞄准——下行光用来校正接收望远镜的角度,上行光用来校正激光器的角度。上下行光谱原则上有差异即可,目前选择红光和绿光只是工程实现方便”。那么,在自由空间量子通信中使用的跟瞄技术到底是怎么一回事,其中又有哪些奥秘呢?

什么是APT
“墨子号”量子卫星与地面站之所以能够实现比较科幻的通信试验,其关键技术就在于APT技术。为了能在卫星与卫星之间或卫星与地面站之间实现可靠通信,首先要求一颗卫星能捕捉到另一颗卫星或地面站发来的光束,称之为信标光,并将该光束会聚到探测器中心,这个过程称作捕获体(Acquisiton)。捕获完成后,接收方也要发出一光束,要求该光束能准确地指向发出信标光的卫星,这个过程称作指向(Pointing)。发出信标光的卫星接收到此光束后,也要相应地完成捕获过程,才能使两颗卫星或卫星和地面站最终达到通信连接状态。为保证这两颗卫星或卫星与地面站一直处于通信状态,必须一直保持这种精确的连接状态,这过程称作跟踪口(Tracking)。人们称以上的捕获、指向及跟踪过程为APT技术。
由于光通信中的通信光束非常窄。因此,为了确保接收方能够接收到足够强的信号能量,必须要保证通信光束与系统光轴的误差控制到误差范围以内,APT技术正是确保了这一高精度要求。因此,APT技术在星间激光通信中扮演着极为重要的角色。

国家天文台兴隆基地实现与“墨子号”天地对接,图为兴隆观测基地1米望远镜(左)
APT系统的结构
APT系统可分为粗瞄准(粗跟踪)子系统、精瞄准(精跟踪)子系统和信号处理及控制子系统。粗瞄准(粗跟踪)子系统主要完成捕获、对准和大视场的跟踪,粗瞄系统实质为一个两轴光学伺服转台,可带动光学天线进行大范围的运动,但是带宽较小,跟踪定位精度较低。精瞄系统用于对目标进行精瞄准和精跟踪,通常是由压电陶瓷或音圈电机驱动,精瞄系统带宽大,精度高,但是运动范围较小。所以通常将粗瞄系统和精瞄系统组成复合轴控制系统,从而可以进行大范围、高精度、快速地定位和跟踪。信号处理及控制系统负责根据光电编码器和CCD传感器反馈的信息对粗、精瞄准(跟踪)子系统进行控制。
以技术比较成熟的SILEX系统为例。SILEX系统的结构如下图所示,由粗瞄准装置、精瞄准装置、提前瞄准装置和天线方向驱动装置组成。

SILEX系统的APT原理图
粗瞄准装置由万向转台、粗瞄准控制器和粗瞄准探测器组成,用于捕获和跟踪环节。根据卫星平台的轨道和姿态参数调整万向转台的瞄准方向,并且以一定的方式进行扫瞄捕获,通过调整转台使入射光斑进入精瞄准控制器视场范围。粗瞄准视场角为几个毫弧度,灵敏度约为10PW,瞄准准精度为几十毫弧度。由于光束的发散角很小,为保证较小的捕获时间,应尽量减小不确定区域的面积,即希望开环瞄准子系统有更高的精确度。
精瞄装置由精瞄镜、精瞄控制器和精瞄探测器组成,主要作用在于补偿粗瞄装置的瞄准误差及跟踪过程中卫星平台微振动的干扰。精瞄要求视场角为几百微弧度,瞄准精度为几个微弧度,跟踪灵敏度大约为几纳瓦。
提前瞄准装置由提前瞄准镜、提前瞄准控制器和提前瞄准探测器。主要用于补偿链路过程中在光束弛豫时间内所发生的卫星间的附加移动。有些系统中提前瞄准探测器是与精瞄探测器共用,另一些系统中这两者是分离的。天线方向驱动装置是光束对准任务的最终实施者,它接受来自开环瞄准、捕获、跟踪等三个子系统的指令,实现光束的对准和跟踪。
APT系统的工作原理
APT系统的原理如下图所示。该终端在调制电路部分应用直接调制方式对激光器进行调制。发射光束经准直望远镜系统将其进行准直,使之平行输出并经精瞄镜、分束片和两个全反射镜反射后由发射窗口发射。接收光束由滤波器滤去杂光后经粗瞄装置和望远镜系统进入接收光学系统。入射光经分光束后分成两部分,一部分入射到信号光检测器(APD),用于进行通信;另一部分入射到CCD测角系统,用于瞄准角度偏差信号的检测。

星上计算机系统用于对整个通信终端进行控制,包括粗瞄准装置系统控制、精瞄准装置系统控制、CCD图像检测、光学通信系统控制。采用CCD测角系统作为捕获、跟踪探测器测量接收端和发射端之间的角度误差。信号光探测器采用雪崩光电二极管(APD);万向转台的运动采用伺服电机驱动,测角传感器采用绝对式光电编码器。伺服电机和编码器均为中空式,安装在万向转台的转桶外;精瞄准装置使用的是二维压电精瞄镜。精瞄镜和光学系统安装在卫星平台内部,望远镜平面与卫星平台表面平行,作为安装基准平面。
建立通信链路的四个阶段
墨子号卫星和地面站的通信用采用以下方法逐步实现这一高难度连接。
首先利用扫描实现卫星与地面站的初步连接。扫描是指卫星发出信标光束,利用精指向装置的偏转改变信标光的方向,使该信标光束在卫星或地面站可能出现的立体角范围内扫描,直到扫描到卫星或地面站。在扫描过程中,首先要确定扫描的立体角范围,这可以由卫星导航系统中的星历表确定。其次要根据卫星或地面站的位置确定扫描策略。
其次进入捕获阶段。卫星探测到信标光后,需要将探测到的信标光束与光通信系统的光轴准确对准,才能实施卫星间的通信。因此,需要将光学探测器探测到的信标光束会聚到探测器中心,也就是实施捕获过程。捕获和跟踪过程使用同一个探测器,最先探测到信标光的探测器部分称为捕获探测器。捕获过程分两步进行第一步,捕获探测器探测到信标光束后,利用FPA的偏转使光束会聚到跟踪探测器上。第二步,将进人到跟踪探测器的光束继续会聚,直至跟踪探测器中心区域。
再次是进入瞄准阶段。当捕获成功后,停止螺旋扫描,光学偏差探测器会探测出光学天线与对方信标光的轴线的偏差,继而根据这一偏差计算得出粗瞄系统和精瞄系统的位置指令,驱动光学天线和快速反射镜,使指向偏差趋于零,实现精确瞄准,接下来就可进行链路通信了。
最后是跟踪阶段。除了地球同步轨道卫星之间或地球同步轨道卫星与地面站之间的通信链路情况外,通信双方往往存在相对运动,所以要实时控制光学天线和快速反射镜的指向。主控系统会根据双方的坐标、运动信息实时计算APT系统的位置指令,粗瞄、精瞄系统根据位置指令进行实时伺服控制。
结语
其实,APT技术除了在激光通信、量子通信中使用,在激光测距,天文观测等已经有过不少应用,是比较成熟的技术,美国和欧洲也都掌握该项技术——欧洲的SILEX高空激光通信实验计划就涉及APT技术,而美国NASA的喷气推进实验室为研究激光通信技术还专门开发过为实现亚微弧级的定位精度,而研发APT算法和相应测试平台。本次“墨子号”量子卫星与地面站通信试验照片虽然显得比较科幻,但却还称不上是中国独有的“黑科技”,用专家的话讲,“这其实是比较成熟的技术,只是这次量子卫星要求跟瞄精度比较高……在保持星地光学系统对准后,就可以传递量子信号了”。
参考文献:
《卫星激光通信粗瞄控制系统优化设计与实现》,贾丁,哈尔滨工业大学,2014年6月
《卫星光通信终端跟瞄控制方法研究》,贾琪,哈尔滨工业大学,2010年7月
《星间光通信中的APT技术及其控制系统》,刘锡民、刘立人、郎海涛、潘卫清、赵栋,中国科学院上海光学精密机械研究所,2004年11月
本文系观察者网独家稿件,文章内容纯属作者个人观点,不代表平台观点,未经授权,不得转载,否则将追究法律责任。关注观察者网微信guanchacn,每日阅读趣味文章。
请支持独立网站,转发请注明本文链接:http://www.guancha.cn/Science/2016_08_30_372849_s.shtml

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

Archiver|红色中国网

GMT+8, 2024-4-19 14:16 , Processed in 0.023405 second(s), 9 queries .

E_mail: redchinacn@gmail.com

2010-2011http://redchinacn.net

回顶部